# 3j-symbol  Main Article Discussion Related Articles  [?] Bibliography  [?] External Links  [?] Citable Version  [?] This editable Main Article is under development and subject to a disclaimer. [edit intro]

In physics and mathematics, Wigner 3-jm symbols, also called 3j symbols, are related to the Clebsch-Gordan coefficients of the groups SU(2) and SO(3) through

${\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}\equiv {\frac {(-1)^{j_{1}-j_{2}-m_{3}}}{\sqrt {2j_{3}+1}}}\langle j_{1}m_{1}j_{2}m_{2}|j_{3}\,{-m_{3}}\rangle .$ The 3j symbols show more symmetry in permutation of the labels than the corresponding Clebsch-Gordan coefficients.

## Inverse relation

The inverse relation can be found by noting that j1 - j2 - m3 is an integral number and making the substitution $m_{3}\rightarrow -m_{3}$ $\langle j_{1}m_{1}j_{2}m_{2}|j_{3}m_{3}\rangle =(-1)^{j_{1}-j_{2}+m_{3}}{\sqrt {2j_{3}+1}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&-m_{3}\end{pmatrix}}.$ ## Symmetry properties

The symmetry properties of 3j symbols are more convenient than those of Clebsch-Gordan coefficients. A 3j symbol is invariant under an even permutation of its columns:

${\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}={\begin{pmatrix}j_{2}&j_{3}&j_{1}\\m_{2}&m_{3}&m_{1}\end{pmatrix}}={\begin{pmatrix}j_{3}&j_{1}&j_{2}\\m_{3}&m_{1}&m_{2}\end{pmatrix}}.$ An odd permutation of the columns gives a phase factor:

${\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{2}&j_{1}&j_{3}\\m_{2}&m_{1}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{3}&j_{2}\\m_{1}&m_{3}&m_{2}\end{pmatrix}}.$ Changing the sign of the $m$ quantum numbers also gives a phase:

${\begin{pmatrix}j_{1}&j_{2}&j_{3}\\-m_{1}&-m_{2}&-m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}.$ ## Selection rules

The Wigner 3j is zero unless $m_{1}+m_{2}+m_{3}=0$ , $j_{1}+j_{2}+j_{3}$ is integer, $|m_{i}|\leq j_{i}$ and $|j_{1}-j_{2}|\leq j_{3}\leq j_{1}+j_{2}$ .

## Scalar invariant

The contraction of the product of three rotational states with a 3j symbol,

$\sum _{m_{1}=-j_{1}}^{j_{1}}\sum _{m_{2}=-j_{2}}^{j_{2}}\sum _{m_{3}=-j_{3}}^{j_{3}}|j_{1}m_{1}\rangle |j_{2}m_{2}\rangle |j_{3}m_{3}\rangle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}},$ is invariant under rotations.

## Orthogonality Relations

$(2j+1)\sum _{m_{1}m_{2}}{\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}&m_{2}&m\end{pmatrix}}{\begin{pmatrix}j_{1}&j_{2}&j'\\m_{1}&m_{2}&m'\end{pmatrix}}=\delta _{jj'}\delta _{mm'}.$ $\sum _{jm}(2j+1){\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}&m_{2}&m\end{pmatrix}}{\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}'&m_{2}'&m\end{pmatrix}}=\delta _{m_{1}m_{1}'}\delta _{m_{2}m_{2}'}.$ 