Adjunction formula: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Andrey Khalyavin
imported>David E. Volk
m (subpages)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{subpages}}
In [[algebraic geometry]], the adjunction formula states that if <math>X, Y</math> are smooth algebraic varieties, and <math>X\subset Y</math> is of codimension 1, then there is a natural isomorphism of sheaves:
In [[algebraic geometry]], the adjunction formula states that if <math>X, Y</math> are smooth algebraic varieties, and <math>X\subset Y</math> is of codimension 1, then there is a natural isomorphism of sheaves:


Line 4: Line 5:


== Examples ==
== Examples ==
* The [[genus degree formula]] for plane curves: Let <math>C\subset\mathrm{P}^2</math> be a smooth plane curve of degree <math>d</math>. Recall that if <math>H\subset\mathbb{P}^2</math>is a line, then <math>\mathrm{Pic}(\mathbb{P}^2)=\mathbb{Z}H</math> and <math>K_{\mathbb{P}^2}\equiv -3H</math>. Hence
* The [[genus-degree formula]] for plane curves: Let <math>C\subset\mathrm{P}^2</math> be a smooth plane curve of degree <math>d</math>. Recall that if <math>H\subset\mathbb{P}^2</math>is a line, then <math>\mathrm{Pic}(\mathbb{P}^2)=\mathbb{Z}H</math> and <math>K_{\mathbb{P}^2}\equiv -3H</math>. Hence
<math>K_C\equiv (-3H+dH)(dH)</math>. Since the degree of <math>K_C</math> is <math>2 genus(C)-2</math>, we see that:
<math>K_C\equiv (-3H+dH)(dH)</math>. Since the degree of <math>K_C</math> is <math>2 genus(C)-2</math>, we see that:


Line 23: Line 24:


== References ==
== References ==
* ''Intersection theory'' 2nd eddition, William Fulton, Springer, isbn 0-387-98549-2, Example 3.2.12.
* ''Intersection theory'' 2nd eddition, William Fulton, Springer, ISBN 0-387-98549-2, Example 3.2.12.
* ''Prniciples of algebraic geometry'', Griffiths and Harris, Wiley classics library, isbn 0-471-05059-8 pp 146-147.
* ''Prniciples of algebraic geometry'', Griffiths and Harris, Wiley classics library, ISBN 0-471-05059-8 pp 146-147.
* ''Algebraic geomtry'', Robin Hartshorn, Springer GTM 52, isbn 0-387-90244-9, Proposition II.8.20.
* ''Algebraic geomtry'', Robin Hartshorn, Springer GTM 52, ISBN 0-387-90244-9, Proposition II.8.20.
 
[[category:CZ Live]]
[[category:Mathematics Workgroup]]

Latest revision as of 14:46, 12 April 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In algebraic geometry, the adjunction formula states that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X, Y} are smooth algebraic varieties, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X\subset Y} is of codimension 1, then there is a natural isomorphism of sheaves:

.

Examples

  • The genus-degree formula for plane curves: Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\subset\mathrm{P}^2} be a smooth plane curve of degree Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} . Recall that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\subset\mathbb{P}^2} is a line, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{Pic}(\mathbb{P}^2)=\mathbb{Z}H} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_{\mathbb{P}^2}\equiv -3H} . Hence

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_C\equiv (-3H+dH)(dH)} . Since the degree of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_C} is , we see that:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle genus(C)=(d^2-3d+2)/2=(d-1)(d-2)/2} .

  • The genus of a curve given by the transversal intersection of two smooth surfaces Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S,T\subset\mathbb{P}^3} : let the degrees of the surfaces be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c,d} . Recall that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H\subset\mathbb{P}^3} is a plane, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{Pic}(\mathbb{P}^3)=\mathbb{Z}H} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_{\mathbb{P}^3}\equiv -4H} . Hence

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_S\equiv (-4H+cH) |_S} and therefore .

e.g. if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S,T} are a quadric and a cubic then the degree of the canonical sheaf of the intersection is 6, and so the genus of the interssection curve is 4.

Outline of proof and generalizations

The outline follows Fulton (see reference below): Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i:X\to Y} be a close embedding of smooth varieties, then we have a short exact sequence:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\to T_X\to i^* T_Y \to N_{X/Y}\to 0} ,

and so Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(T_X) = c(i^* T_Y)/N_{X/Y}} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is the total chern class.

References

  • Intersection theory 2nd eddition, William Fulton, Springer, ISBN 0-387-98549-2, Example 3.2.12.
  • Prniciples of algebraic geometry, Griffiths and Harris, Wiley classics library, ISBN 0-471-05059-8 pp 146-147.
  • Algebraic geomtry, Robin Hartshorn, Springer GTM 52, ISBN 0-387-90244-9, Proposition II.8.20.