Metabolism/Citable Version: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chris day
imported>Chris day
(→‎ATP:the energy currency of cells: remove incorrect info re: redox potential. Also try to make it less technically challenging to read and generalise to include non plant examples (cut NADPH).)
Line 21: Line 21:


===ATP:the energy currency of cells===
===ATP:the energy currency of cells===
There is one particular energetically favourable reaction that is repeatedly used to drive ''uphill'' reactions in metabolism. This reaction, the hydrolysis of [[ATP]] into [[ADP]] and a [[phosphate]] ion, occurs again and again in metabolic pathways. ATP is sometimes called "the energy currency" (money) of cells due to this critical role and, consequently, it is vital for a cell to reconstitute the ATP pool. To restore the supply of ATP, it must be reformed from the ADP and phosphate group by coupling this ''uphill'' reaction to other "downhill" reactions.  ATP synthesis is one of the major tasks faced by cells and is so ubiquitous that organisms can be classified according to just how they derive energy for ATP synthesis. Organisms can be classified as:
There is one particular energetically favourable reaction that is repeatedly used to drive "uphill" reactions in metabolism. This reaction, the hydrolysis of [[ATP]] into [[ADP]] and a [[phosphate]] ion, occurs again and again in metabolic pathways. ATP is sometimes called "the energy currency" (money) of cells due to this critical role and, consequently, it is vital for a cell to reconstitute the ATP pool. To restore the supply of ATP, it must be reformed from the ADP and phosphate group by coupling this "uphill" reaction to other "downhill" reactions.  ATP synthesis is one of the major tasks faced by cells and is so ubiquitous that organisms can be classified according to how they derive energy for ATP synthesis. Organisms can be classified as:


====[[Phototroph|Phototrophic]]====
====Phototrophic====
Phototrophic organisms can obtain energy from light. A typical example is provided by the [[light dependent reaction]]s of photosynthesis: in these reactions, excitation of a [[photosystem]] caused by absorption of a light photon markedly lowers its redox potential. Since electron flow tends to occur from low potential species to high potential species, the excited photosystem transfers electrons to higher potential species in an electron transport chain present in the [[thylakoid]] membrane. These electrons eventually reduce NADP<sup>+</sup> to [[NADPH]]. The energy released in the electron transfer steps is used to transport H<sup>+</sup> across the thylakoid membrane, thereby creating a [[proton gradient]] across the thylakoid membrane. The energy stored in this proton gradient can be used to synthesize [[ATP]] from [[ADP]] and [[phosphate]] anion (see [[Chemiosmotic hypothesis]]).  
[[Phototroph|Phototrophic]] organisms can obtain energy from light. In these reactions, excitation of a [[photosynthetic reaction centre]] is caused by the absorption of a light photon. In the process, the reaction center loses an electron that excites (reduces) an electron acceptor, such as [[pheophytin]], initiating the flow of electrons down an [[electron transport chain]] present in the [[thylakoid]] membrane. The energy released in the electron transfer steps serves to create a proton gradient across the membrane; its dissipation is used by [[ATP Synthase]] as the energy to synthesis of [[Adenosine_triphosphate|ATP]] from [[ADP]] and a [[phosphate]] anion (see [[Chemiosmotic hypothesis]]).  Depending on the organism, the reaction center regains the lost electron by either recycling the excited electrons or taking one from an electron donor.  In plants, a water molecule serves as the electron donor through a process called [[photolysis]], that releases [[oxygen]] gas as a waste product.


[[Image: Metabolism scheme anabolism.GIF|thumb|left|350px|A few of the anabolic pathways in a cell. Glucose can be stored as a [[glycogen]] polymer, or synthesized from lower  molecular weight precursors. Excess acetyl-CoA can be stored as fatty acids, or converted into [[ketone bodies]].]]
[[Image: Metabolism scheme anabolism.GIF|thumb|left|350px|A few of the anabolic pathways in a cell. Glucose can be stored as a [[glycogen]] polymer, or synthesized from lower  molecular weight precursors. Excess acetyl-CoA can be stored as fatty acids, or converted into [[ketone bodies]].]]


====[[chemotroph|Chemotrophic]]====
====Chemotrophic====
Chemotrophic organisms obtain energy from chemical reactions. For example, [[glucose]] can be oxidized to [[pyruvate]] through [[glycolysis]]. This process yields two molecules of ATP for each molecule of glucose, and releases four electrons, which reduce NAD<sup>+</sup> to [[NADH]]. As the NAD<sup>+</sup> molecules are scarce, the electrons present in NADH must be transferred to another molecule in order to regenerate NAD<sup>+</sup> and to allow the degradation of more glucose molecules. NADH may donate its electrons to pyruvate (or to a pyruvate derivative), in which case a [[fermentation]] is said to occur. Alternatively, the electron acceptor may be a molecule totally unrelated to the metabolic pathway that released the electrons now present in NADH, in which case a [[respiration]] is said to occur. In the presence of NAD<sup>+</sup>, [[pyruvate dehydrogenase]] may decarboxylate pyruvate into [[acetyl-CoA]], a pivotal molecule in metabolism. [[Acetyl-CoA]] can also be formed through [[beta-oxidation|&beta;-oxidation]] of [[fatty acids]] or through the catabolism of amino acids, and is oxidized to CO<sub>2</sub> through the [[Krebs cycle]]. The Krebs cycle releases eight electrons from each acetyl-CoA molecule, which are used to reduce three NAD<sup>+</sup> to three [[NADH]] and one [[FAD]] to FADH<sub>2</sub>. The energy released in electron transfer from NADH and FADH<sub>2</sub> to oxygen (in aerobic organisms) or other electron acceptor (in organisms that perform anaerobic respiration) may be used to create a [[proton gradient]] across a membrane, and to synthesize ATP through dissipation of this gradient (see [[Chemiosmotic hypothesis]]).
Chemotrophic organisms obtain energy from chemical reactions. For example, [[glucose]] can be oxidized to [[pyruvate]] through [[glycolysis]]. This process yields two molecules of ATP for each molecule of glucose, and releases four electrons, which reduce NAD<sup>+</sup> to [[NADH]]. As the NAD<sup>+</sup> molecules are scarce, the electrons present in NADH must be transferred to another molecule in order to regenerate NAD<sup>+</sup> and to allow the degradation of more glucose molecules. NADH may donate its electrons to pyruvate (or to a pyruvate derivative), in which case a [[fermentation]] is said to occur. Alternatively, the electron acceptor may be a molecule totally unrelated to the metabolic pathway that released the electrons now present in NADH, in which case a [[respiration]] is said to occur. In the presence of NAD<sup>+</sup>, [[pyruvate dehydrogenase]] may decarboxylate pyruvate into [[acetyl-CoA]], a pivotal molecule in metabolism. [[Acetyl-CoA]] can also be formed through [[beta-oxidation|&beta;-oxidation]] of [[fatty acids]] or through the catabolism of amino acids, and is oxidized to CO<sub>2</sub> through the [[Krebs cycle]]. The Krebs cycle releases eight electrons from each acetyl-CoA molecule, which are used to reduce three NAD<sup>+</sup> to three [[NADH]] and one [[FAD]] to FADH<sub>2</sub>. The energy released in electron transfer from NADH and FADH<sub>2</sub> to oxygen (in aerobic organisms) or other electron acceptor (in organisms that perform anaerobic respiration) may be used to create a [[proton gradient]] across a membrane, and to synthesize ATP through dissipation of this gradient (see [[Chemiosmotic hypothesis]]).



Revision as of 16:13, 2 January 2007

Metabolism (from Greek μεταβολισμός "metabolismos") is the biochemical modification of chemical compounds by living organisms and cells. In common usage, the word is used to refer to the basal metabolic rate, the "set point" that each person has in breaking down food energy and building up their own body. Sometimes, in multicellular creatures like humans, it also encompasses the overall ingestion of food and excretion of wastes, and the building up of muscles and the growth of the body. In terms of the whole organism, metabolism can also include the chemical conversion of specific items other than food that may be ingested, like drugs and poisons (see Drug metabolism). This article describes the actual biology of metabolism at a cellular level, which explains just how those processes are carried out.

Metabolism includes: (1) anabolism, in which a cell uses chemical energy and reducing power to construct complex molecules, and perform life functions such as creating cellular structure; and (2) catabolism, in which a cell breaks down complex molecules to yield the chemical energy and reducing power. Cell metabolism involves complex sequences of controlled chemical reactions called metabolic pathways. Just as the word metabolism can be used to describe processes in a whole organism, the terms "anabolism" and "catabolism" can similarly be used in this way. For example, anabolic processes can also refer to building up muscle and adding body weight, while catabolic processes can refer to the loss of muscle mass and body fat.

With proper training and nutrition, weight lifting promotes the anabolic process of bodybuilding. Natural hormones, produced in both men and women, aid muscle development in response to weight bearing exercise. This athlete has no need to resort to banned substances.

History

Santorio Santorio (1561-1636) in his steelyard balance, from Ars de statica medecina, first published 1614.

The first controlled experiments on human metabolism were published by Santorio Santorio in 1614 in his book Ars de statica medecina, that made him famous throughout Europe. Santorio described his long series of personal experiments: in which he weighed himself in a chair suspended from a steelyard balance (see image), before and after eating, sleeping, working, sex, fasting, depriving from drinking, and excreting. He found that by far the greatest part of the food he took in was lost from the body through perspiratio insensibilis (insensible perspiration). In medicine and the health sciences today, the term "insensible losses" is still used to refer to the amount of fluid lost from the body through perspiration and processes that (unlike urine or feces) do not yield any obvious portion that can be weighed or measured.

At about the same time, Jan Baptist van Helmont made the first observations regarding photosynthesis, when he discovered that plant growth required (almost) no mass from the soil. The source of this mass was not initially obvious, but a series of further discoveries led to a basic understanding of the metabolic processes that create the plant mass. In the 18th century, Joseph Priestley discovered that green plants released a substance (later found to be oxygen) that could sustain the life of a mouse in an enclosed chamber. Jan Ingenhousz extended Priestley's experiments to show that it was the influence of light on the plant that could cause it to rescue a mouse and Jean Senebier then showed that CO2 was taken up by plants during photosynthesis. In 1804, the final piece was put into place by Nicolas de Saussure who discovered that the increase in plant mass (i.e. plant growth) arises not only from the fixation of atmospheric CO2, but also from the incorporation of water.

Between 1854 and 1864, Louis Pasteur discovered that glucose fermentation is due to microorganisms, and, in 1897, Eduard Buchner proved that cell-free yeast extracts could also perform these reactions, and so the ability to ferment was not limited to entire living creatures (cells)- but included certain portions of their physical contents. Subsequent investigations showed that living organisms, with few exceptions, metabolize glucose using the same mechanism, a biochemical pathway that breaks down sugar.

Overview: Harnessing energy and making chemical bonds

A few of the catabolic pathways in a cell. Proteins are broken down into amino acids, and fats into glycerol and fatty acids. Carbohydrates (mostly sugars and starch) are hydrolyzed into monosacharides like glucose. The mitochondrion (in green) contains the enzymes that catalyze the citric acid cycle and beta-oxidation, as well as the electron transport chain (where respiration occurs). ATP is a high-energy molecule. See text for details

Living things, like all matter, obey the laws of thermodynamics. That means that energy and matter cannot be created from nothing. That means that cool things always get colder and not warmer, and it means each fragment of something is always smaller than the thing itself. But, unlike inanimate things, cells and tissues are able to harness energy and matter to change in ways that give the illusion of defying those laws. A baby does grow. A walrus' body is warmer than its icy surroundings. An amoeba can divide and shortly be two amoebas, each one the same size of the original cell that split. The metabolism of the baby, the walrus, and the amoeba is responsible for all these processes. Of course, rather than defy the laws of thermodynamics, the chemical reactions that make up metabolic processes always obey them.

Enzymes present in cells can catalyze a large variety of chemical reactions with exquisite specificity. Sometimes these enzymes are floating free in the cytoplasm of the cell, other times they are corralled together within a compartment of the cell, a special organelle. For example, the mitochondrion of cells contains enzymes for oxidative phosphorylation (a catabolic process). The Golgi apparatus of cells contains the of the enzymes used for protein posttranslational modification (an anabolic process).

Often, the chemical reactions needed to synthesize useful cell components require energy. Chemists describe these reactions as involving a positive change in free energy. Such chemical transformations are not spontaneous, but "uphill", requiring more than just the mixing together of the susbtrates. In these cases, specific enzymes may couple each "uphill" (non-spontaneous or energy requiring) reaction to a second, steep "downhill" (very spontaneous or energy releasing) reaction. Thus, thermodynamically favorable reactions can be used to "drive" each thermodynamically unfavorable one such that the the overall process goes on its own, as a spontaneous series of reactions.

ATP:the energy currency of cells

There is one particular energetically favourable reaction that is repeatedly used to drive "uphill" reactions in metabolism. This reaction, the hydrolysis of ATP into ADP and a phosphate ion, occurs again and again in metabolic pathways. ATP is sometimes called "the energy currency" (money) of cells due to this critical role and, consequently, it is vital for a cell to reconstitute the ATP pool. To restore the supply of ATP, it must be reformed from the ADP and phosphate group by coupling this "uphill" reaction to other "downhill" reactions. ATP synthesis is one of the major tasks faced by cells and is so ubiquitous that organisms can be classified according to how they derive energy for ATP synthesis. Organisms can be classified as:

Phototrophic

Phototrophic organisms can obtain energy from light. In these reactions, excitation of a photosynthetic reaction centre is caused by the absorption of a light photon. In the process, the reaction center loses an electron that excites (reduces) an electron acceptor, such as pheophytin, initiating the flow of electrons down an electron transport chain present in the thylakoid membrane. The energy released in the electron transfer steps serves to create a proton gradient across the membrane; its dissipation is used by ATP Synthase as the energy to synthesis of ATP from ADP and a phosphate anion (see Chemiosmotic hypothesis). Depending on the organism, the reaction center regains the lost electron by either recycling the excited electrons or taking one from an electron donor. In plants, a water molecule serves as the electron donor through a process called photolysis, that releases oxygen gas as a waste product.

A few of the anabolic pathways in a cell. Glucose can be stored as a glycogen polymer, or synthesized from lower molecular weight precursors. Excess acetyl-CoA can be stored as fatty acids, or converted into ketone bodies.

Chemotrophic

Chemotrophic organisms obtain energy from chemical reactions. For example, glucose can be oxidized to pyruvate through glycolysis. This process yields two molecules of ATP for each molecule of glucose, and releases four electrons, which reduce NAD+ to NADH. As the NAD+ molecules are scarce, the electrons present in NADH must be transferred to another molecule in order to regenerate NAD+ and to allow the degradation of more glucose molecules. NADH may donate its electrons to pyruvate (or to a pyruvate derivative), in which case a fermentation is said to occur. Alternatively, the electron acceptor may be a molecule totally unrelated to the metabolic pathway that released the electrons now present in NADH, in which case a respiration is said to occur. In the presence of NAD+, pyruvate dehydrogenase may decarboxylate pyruvate into acetyl-CoA, a pivotal molecule in metabolism. Acetyl-CoA can also be formed through β-oxidation of fatty acids or through the catabolism of amino acids, and is oxidized to CO2 through the Krebs cycle. The Krebs cycle releases eight electrons from each acetyl-CoA molecule, which are used to reduce three NAD+ to three NADH and one FAD to FADH2. The energy released in electron transfer from NADH and FADH2 to oxygen (in aerobic organisms) or other electron acceptor (in organisms that perform anaerobic respiration) may be used to create a proton gradient across a membrane, and to synthesize ATP through dissipation of this gradient (see Chemiosmotic hypothesis).

Reducing Power: obtaining electrons for chemical bonds

Reducing power is an important input into many anabolic pathways, including the Calvin cycle of photosynthesis, the biosynthesis of amino acids, and the biosynthesis of fatty acids. Reducing power is usually supplied as hydrogen equivalents carried by NADPH. Organisms can be classified according to the primary source of this reducing power as:

Organotrophic

These organisms use organic compounds (e.g. glucose) as the primary electron source.

Lithotrophic

These organisms use inorganic compounds (e.g. Fe2+, (iron ions)) as primary electron source.

Regulation of metabolism in animals

In animals, metabolism is controlled by the endocrine system through the secretion of a wide range of hormones. Some hormones have anabolic actions on the body, others have mainly catabolic actions. For example, testosterone is an anabolic hormone, and synthetic steroids that produce the anabolic actions are known as anabolic steroids. Cortisol on the other hand, which is a steroid hormone produced by the adrenal gland, is a catabolic hormone.

In mammals, and other warm blooded animals, metabolic process are ultimately controlled by the central nervous system, which regulates the endocrine system. They are influenced by the balance between the energy demands of the organism, and the energy stores (see also Hunger). For example, fat stores secrete a hormone called leptin that acts at the hypothalamus to regulate hormone secretion. The hypothalamus is also sensitive to circulating concentrations of glucose, and to body temperature. When the ambient temperature is low, the metabolic rate of an endothermic animal will increase in order to generate more body heat (thermogenesis). In animals that hibernate, the body temperature drops down enough that the basal metabolic rate is quite low. This conserves resources over a winter period of inactivity.

Some ectothermic animals, like reptiles, regulate their body tempertaure by behavior. These "cold blooded" creatures, including lizards, snakes, and turtles, keep at an optimum body tempertaure by heating up in the sun (basking) and cooling down in the shade or the cool earth of a burrow. The metabolism of these animals also changes with body temperature, and explain the sluggish movements of an ectotherm in colder seasons or times of day.

Links to subtopics dealing with metabolism

General pathways

Anabolism

Anabolic pathways that create building blocks and compounds from simple precursors:

Catabolism

Drug metabolism

Drug metabolism pathways, the modification or degradation of drugs and other xenobiotic compounds through specialized enzyme systems:

Nitrogen metabolism

Nitrogen metabolism includes the pathways for turnover and excretion of nitrogen in organisms as well as the biological processes of the biogeochemical nitrogen cycle:

Other

See also

External links